Влияние исходного фазового состава на деформируемость, микротвердость и структуру сплава TiNi в процессе электропластической прокатки

А. А. Потапова, В. В. Столяров

Исследована деформационная способность сплавов $Ti_{50,0}Ni_{50,0}$ и $Ti_{49,2}Ni_{50,8}$. Показано, что использование электропластической прокатки (ЭПП) по сравнению с холодной прокаткой в 6 — 10 раз повышает деформационную способность сплава TiNi. Деформационная способность при прокатке с током сплава $Ti_{50,0}Ni_{50,0}$ в 3 раза выше, чем сплава $Ti_{49,2}Ni_{50,8}$. Однако сплав $Ti_{49,2}Ni_{50,8}$ упрочняется значительно интенсивнее.

Ключевые слова: электропластическая прокатка, деформируемость, сплав TiNi.

In the paper deformability of $Ti_{50.0}Ni_{50.0}$ and $Ti_{49.2}Ni_{50.8}$ alloys is investigated. It is shown that use electroplastic rolling in comparison with cold rolling in 6-10 times raises deformability of TiNi alloy. Thus, deformability of $Ti_{50.0}Ni_{50.0}$ alloy by electroplastic rolling in 3 times above, than $Ti_{49.2}Ni_{50.8}$ alloy. However $Ti_{49.2}Ni_{50.8}$ alloy is strengthened much more intensively.

Key words: electroplastic rolling, deformability, alloy TiNi.

Введение

Известно, что при термомеханической обработке металлов и сплавов важная роль отводится их способности изменять свою форму и размеры при пластической деформации. При этом значение имеет комплекс создаваемых механических свойств. Задача получения изделий с высокими механическими свойствами для труднодеформируемых сплавов на основе TiNi решается ограниченно, поскольку методы холодной обработки давлением не позволяют в этом случае добиться больших деформаций, а деформирование при повышенных температурах приводит к снижению уровня свойств. Недавно было показано, что для получения материалов с высоким уровнем механических и технологических свойств можно использовать метод ЭПП [1], который в сочетании с постдеформационным отжигом позволяет добиться значительного структурного измельчения [1, 2]. В [2, 3] показано, что применение ЭПП к сплаву $Ti_{49,3}Ni_{50,7}$ повышает деформируемость -

максимальную деформацию до разрушения — в 1,5-2 раза по сравнению с другими методами холодной обработки давлением. Последеформационный отжиг в интервале температур $400-500^{\circ}$ С после ЭПП приводит к формированию зеренной нанокристаллической структуры и достижению высоких прочностных и функциональных свойств сплава $Ti_{49,3}Ni_{50,7}$ [4, 5]. Вместе с тем, сплавы с памятью формы на основе интерметаллидного соединения TiNi достаточно разнообразны по химическому и фазовому составу, влияние которого на особенности ЭПП ранее не исследовали.

Цель данной работы — сравнение деформируемости, структуры и микротвердости при ЭПП сплавов $\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}$ и $\mathrm{Ti}_{49,2}\mathrm{Ni}_{50,8}$, стехиометрического и застехиометрического составов, соответственно.

Материал и методики исследования

С целью определения влияния исходного фазового состава материалами исследования были

Таблица 1

Характеристические температуры мартенситных превращений

Сплав	Термическая	Прямое превращение				Обратное превращение			
	обработка сплава	M _H , °C	M _K , °C	M _{max} , °C	Δ <i>T</i> , °C	A _H , °C	A _K , °C	A _{max} , °C	ΔT, °C
Ti _{49,2} Ni _{50,8}	Закалка с 750°C (1 ч) в воду	-5	-37	-22	32	-5	17	9	22
$Ti_{50,0}Ni_{50,0}$	Отжиг 850°C	45	25	3 5	20	58	77	71	19

выбраны сплав $Ti_{49,2}Ni_{50,8}$, обладающий в закаленном состоянии структурой B2-аустенита, и сплав $Ti_{50,0}Ni_{50,0}$ с исходной структурой B19′-мартенсита в форме горячекатанных прутков \varnothing 6,1 \times 135 мм. Характеристические температуры для данных составов сплава (табл. 1) определяли методом диффренциальной сканирующей калориметрии (ДСК) на приборе METTLER TOLEDO DSC822 и приведены в табл. 1.

Для сравнения деформационной способности при прокатке с током образцы были подвергнуты ЭПП до разрушения.

Прокатку с применением импульсного тока проводили на двухвалковом прокатном стане с валками, имеющими калибровочные отверстия. Ручьи на валках шестигранные, размер калибров на валках варьируется от 1 до 7 мм. Прокатный стан оборудован генератором импульсного тока ГИТ. Для подведения тока использовали скользящий контакт (отрицательный полюс) до зоны деформации образца и один из валков (положительный полюс), соответственно. Прокатку вели при комнатной температуре со скоростью 5 см/с в пошаговом режиме при регулируемом разовом обжатии по диаметру (~25 мкм) при плотности однополярного импульсного тока $j = 90 \pm 5$ A/мм², длительности импульса $120 \cdot 10^{-6}$ с и частоте 800 - 1000 Гц. После каждого шага прокатки образцы охлаждали в воде, чтобы избежать влияния возможного разогрева. Перед каждым последующим проходом для однородного распределения деформации образцы поворачивали на 90° вокруг продольной оси и меняли направление прокатки на противоположное. Для последующих микроструктурных исследований и измерения микротвердости в процессе и после прокатки отбирали образцы, которые соответствовали величинам истинной деформации e=0,8 ($\oslash 4$ мм), e=1,2 ($\oslash 3,4$ мм), e=1,4 ($\oslash 3$ мм), e=3,6 ($\oslash 1$ мм). Истинную деформацию рассчитывали по формуле

$$e = \ln \frac{S_0}{S},$$

где S_0 , S — площадь поперечного сечения прутка до и после прокатки, соответственно.

Микротвердость в поперечном сечении прокатанного образца измеряли на приборе ПМТ-3 под нагрузкой $100\,\mathrm{r}$ при выдержке $20\,\mathrm{c}$.

Микроструктура была изучена методом просвечивающей электронной микроскопии (ПЭМ) на микроскопе Tesla Bs-540. Фольги для ПЭМ были получены электроискровой резкой, механическим утонением и электролитической полировкой образцов в поперечном сечении прутка.

Результаты эксперимента и их обсуждение

Результаты исследования деформируемости сплавов $Ti_{50,0}Ni_{50,0}$ и $Ti_{49,2}Ni_{50,8}$, прокатанных с током и без тока приведены в табл. 2. Представлены значения максимальной деформации, до которой образец деформируется без появления видимых микротрещин при ЭПП.

Данные таблицы показывают, что прокатка с током для каждого из сплавов повышает деформируемость в 6-10 раз по сравнению с прокаткой без тока. Видно, что деформационная способность сплава ${\rm Ti}_{50,0}{\rm Ni}_{50,0}$ выше, чем у сплава ${\rm Ti}_{49,2}{\rm Ni}_{50,8}$ как без использования тока, так и при ЭПП. Применение импульсного тока позволяет деформировать сплав стехиометрического состава до истинной деформации e=3,6, что в 3 раза выше аналогичной величины

Таблица 2

Сплав	Фазовый состав	Предельная истинная деформация при прокатке без тока, e_{\max}	Предельная истинная деформация при ЭПП, $e_{ m max}$
Ti _{49,2} Ni _{50,8}	аустенит	0,1	1,2
Ti _{50,0} Ni _{50,0}	мартенсит	0,6	3,6

Деформируемость сплавов, прокатанных с током и без тока

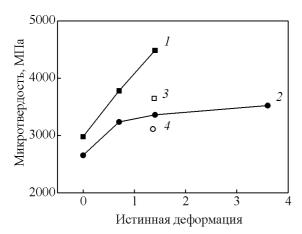


Рис. 1. Зависимость микротвердости в от истинной деформации для сплавов: 1 — $\mathrm{Ti}_{49,2}\mathrm{Ni}_{50,8}$, 2 — $\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}$, 3 — $\mathrm{Ti}_{49,2}\mathrm{Ni}_{50,8}$ + отжиг при 500 °C, 4 — $\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}$ + отжиг при 500 °C.

для сплава застехиометрического состава. Величина e=3,6 в этом случае не является деформацией, приводящей к разрушению, а связана с ограничением размеров калибровочных отверстий в валках. По-видимому в сплаве с исходной мартенситной структурой наряду с механическим двойникованием В19-фазы может происходить дополнительное образование двойников В2-фазы в процессе обратного мартенситного превращения [6], что вносит дополнительный вклад в деформируемость.

Сравнение микротвердости двух сплавов позволяет оценить характер деформационного упрочнения (рис. 1). Уровень микротвердости как до деформации, так и после застехиометрического сплава выше, чем для сплава эквиатомного состава. Измерение микротвердости в процессе ЭПП обоих сплавов показало ее значительное повышение по сравнению с исходным недеформированным состоянием.

Однако степень деформационного упрочнения у сплавов различная. Видно, что сплав ${\rm Ti}_{49,2}{\rm Ni}_{50,8}$ более интенсивно упрочняется в процессе ЭПП. По-видимому, различие в уровне микротвердости объясняется наличием избыточного Ni в исходной ОЦК-решетке сплава ${\rm Ti}_{49,2}{\rm Ni}_{50,8}$, представляющего собой твердый раствор.

Основной причиной отличия интенсивности упрочнения является различие в механизме деформации в разных исходных фазах сплавов (В2-фаза в сплаве $\mathrm{Ti}_{49,2}\mathrm{Ni}_{50,8}$ и В19′-фаза — в $\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}$). Вклад в интенсивность упрочнения вносит модуль упругости E, который пропорционален возникающим в материале напряжениям [7]. Поскольку E аустенитной фазы почти в 2 раза превышает E мартенсита [8], это вносит существенный вклад в уровень упрочнения сплава $\mathrm{Ti}_{49,2}\mathrm{Ni}_{50,8}$, который оказывается выше, чем в сплаве $\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}$ при одной и той же величине истинной деформации.

Кроме того, более интенсивное упрочнение сплава застехиометрического состава в процессе ЭПП может быть связано с возможностью упрочнения матрицы частицами избыточной фазы ${\rm Ti}_3{\rm Ni}_4$, выделяющимися вследствие локального разогрева при пропускании тока.

Поскольку непосредственно после любой пластической деформации, включая ЭПП, структура сплавов является неоднородной, традиционно к ним применяют постдеформационный отжиг. В [5, 9] показано, что для получения зеренной структуры и

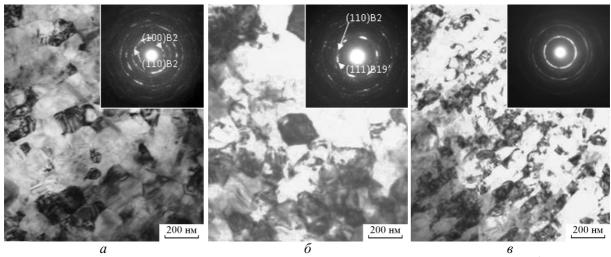


Рис. 2. Микроструктура сплавов после ЭПП и отжига: $a-\mathrm{Ti}_{49.2}\mathrm{Ni}_{50,8}\,e=1,2$ + отжиг при 500 °C; $b-\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}\,e=1,4$ + отжиг при 500 °C; $b-\mathrm{Ti}_{50,0}\mathrm{Ni}_{50,0}\,e=1,4$ + отжиг при 450 °C.

достижения оптимальных механический свойств к сплаву Ti-50.7 ат% Ni после ЭПП необходимо применять рекристаллизационный отжиг при $500\,^{\circ}$ С. Постдеформационный отжиг при $500\,^{\circ}$ С в течение 1 ч снижает микротвердость, особенно значительно для сплава $Ti_{49.2}Ni_{50.8}$. В отожженном состоянии различие в микротвердости деформированных сплавов заметно ниже (рис. 1).

На рис. 2 представлена микроструктура обоих исследуемых сплавов после отжига. В сплаве с исходной аустенитной структурой после ЭПП до величины истинной деформации e = 1,2 с последующим отжигом при 500°C формируется наноструктура со средним размером зерна 80 нм. Отжиг при 500 °C в сплаве с исходно мартенситной структурой приводит к формированию зеренной структуры с размером зерна 100 нм, однако зеренная структура формируется уже после отжига при 450 °C. Средний размер зерна в этом случае составляет 60 нм. Анализ дифракционных картин позволяет сделать вывод о том, что сплав $Ti_{49.2}Ni_{50.8}$ после ЭПП и отжига остается преимущественно в аустенитном состоянии, в то время как в сплаве $Ti_{50.0}Ni_{50.0}$ формируется смешанная аустенитно-мартенситная

При комнатной температуре сплав $Ti_{50,0}Ni_{50,0}$ с исходной мартенситной структурой обладает существенно большей деформационной способностью при прокатке с током, чем сплав $Ti_{49,2}Ni_{50,8}$ с исходной структурой B2-аустенита. Максимально достигнутая деформация первого в 3 раза выше. Кроме того, застехиометрический сплав более интенсивно упрочняется при увеличении деформации и обладает более высокой микротвердостью (в 1,5 раза больше), чем эквиатомный при одной и той же степени деформации.

Выводы

- 1. ЭПП повышает деформационную способность сплавов ${\rm Ti}_{49,2}{\rm Ni}_{50,8}$ и ${\rm Ti}_{50,0}{\rm Ni}_{50,0}$ в 6 10 раз по сравнению с прокаткой без тока. Деформируемость при прокатке с током сплава ${\rm Ti}_{50,0}{\rm Ni}_{50,0}$ ($e_{\rm max}$ = 3,58) в 3 раза выше деформируемости сплава ${\rm Ti}_{49,2}{\rm Ni}_{50,8}$ ($e_{\rm max}$ = 1,2).
- 2. В исходном и деформированном в процессе ЭПП состояниях сплав $Ti_{49,2}Ni_{50,8}$ имеет более высокую микротвердость и более интенсивно упрочняется, чем $Ti_{50,0}Ni_{50,0}$.

3. Постдеформационные отжиги при $450-500\,^{\circ}\mathrm{C}$ сплавов $Ti_{49,2}Ni_{50,8}$ и $Ti_{50,0}Ni_{50,0}$ приводят к формированию наноструктурного состояния с размером зерен 60-100 нм.

Работа выполнена при финансовой поддержке РФФИ (грант № 12-08-31312-мол_а) и Министерства образования и науки РФ (государственный контракт № 14.740.11.0825)

Литература

- 1. Столяров В.В. Электропластическая деформация как способ получения наноструктурного сплава TiNi. Научная сессия МИФИ-2009, т. 3, М.: Издательство МИФИ, с. 88 91.
- Столяров В.В., Угурчиев У.Х., Трубицына И.Б., Прокошкин С.Д., Прокофьев Е.А. Интенсивная электропластическая деформация сплава ТiNi. Физика и техника высоких давлений, 2008, т. 16, № 4, с. 48 – 51.
- Гуртовая И.Б., Инаэкян К.Э., Коротицкий А.В., Угурчиев У.Х., Макушев С.Ю., Хмелевская И.Ю., Данилова Е.С., Сергеева А.Е., Столяров В.В., Прокошкин С.Д., Влияние режимов ЭПП на деформируемость и функциональные свойства сплава TiNi с памятью формы. Журнал функциональных материалов, 2008, т. 2, № 4, с. 130 – 137.
- Stolyarov V.V. Structure refinement and electropulse current effect on mechanical properties of shape memory TiNi alloy. Materials Science Forum, 2010, v. 633 – 634, p. 595 – 603.
- Потапова А.А., Столяров В.В. Структурные изменения при электропластической прокатке и отжиге в прутке сплава ТіNі. Известия ВУЗов. Черная металлургия, 2010, № 10, с. 68 71.
- Сурикова, Н. С. Тюменцев А. Н., Евтушенко О. В. Мартенситное превращение под напряжением в 001 кристаллах никелида титана и его связь с механическим двойникованием В2-фазы. Известия высших учебных заведений. Физика, 2009, т. 52, № 5, с. 58 67.
- Трефилов В.И., Моисеев В.Ф., Печковский Э.П. и др. Деформационное упрочнение и разрушение поликристаллических металлов. Киев: Наукова думка, 1987, 248 с.
- Duerig T.W., Pelton A.R. Ti-Ni Shape memory alloys, Advanced Materials. Materials Properties Handbook: Titanium Alloys. Editors R.Boyer, G. Wesch, E.W. Collings, ASM International, 1994, p. 1035 – 1048.
- 9. Потапова А.А., Столяров В.В. Влияние режимов отжига на структуру и микротвердость прутка TiNi. MиTOM, 2011, № 11, с. 41 45.

Статья поступила в редакцию 05.03.2012 г.

Потапова Анна Александровна — Институт машиноведения им. А.А. Благонравова Российской академии наук (г. Москва), младиий научный сотрудник, аспирант Московского Государственного индустриального университета. Специализируется в области физического материаловедения, сплавов с памятью формы, комбинированных методов деформационного воздействия, электропластической прокатки, фазовых превращений. E-mail: ls3216@yandex.ru.

Столяров Владимир Владимирович — Институт машиноведения им. А.А. Благонравова РАН (г. Москва), доктор технических наук, профессор, главный научный сотрудник. Специалист в области физического материаловедения, наноструктурных материалов. E-mail: vlstol@mail.ru.