Модифицированные полимеры, содержащие углеродные нанотрубки

С. Г. Шуклин, С. В. Бузилов, Д. С. Шуклин

Исследованы полимерные композиции на основе эпоксидной смолы, содержащие модифицирующие добавки: многослойные углеродные нанотрубки, содержащие никель, активированный уголь. Изучены морфология поверхности и поверхностное натяжение композиций. Приведена температурная зависимость теплоемкости. Показано влияние углеродных нанотрубок на свойства нанокомпозитов на основе полимерной матрицы.

Ключевые слова: многослойные углеродные нанотрубки, вспучивающиеся композиции, степень вспучивания, морфология поверхности, поверхностное натяжение, теплоемкость.

The paper is dedicated to the research of polymeric compositions on a basis epoxy resin cross-linked by polyethylene polyamine and containing modifying additives: multilayered carbon nanotubes containing nickel, the activated coal. The morphology of a surface and a superficial tension of compositions are studied. Results of measurement of temperature dependence of a thermal capacity are resulted. Influence carbon nanotubes property nanocomposites on the basis of a polymeric matrix has been shown.

Keywords: multilayered carbon nanotubes, intumescent composites, intumescent degree, morphology of surface, superficial tension, heat capacity dependence

Введение

В настоящее время большое внимание уделяется исследованию углеродных нанотрубок как перспективных материалов при создании новых композиционных материалов с уникальными характеристиками. В многочисленных статьях [1-5], посвященных композиционным материалам, отмечается положительное воздействие нанотрубок на свойства композитов, их большой перспективе для применения в строительной индустрии, машиностроении и транспорте. Одними из важнейших характеристик новых материалов являются их тепловые, электрические и механические свойства.

Интерес к этой проблеме вызван тем, что наноразмерные структуры при введении их в полимерную матрицу значительно изменяют свойства полимерного композита за счет образования большого количества нанофаз, которые оказывают влияние на надмолекулярную структуру и поверхностные свойства полимера.

Как правило, для защиты полимерных материалов от высокотемпературных потоков или пламе-

ни используют вспучивающиеся покрытия или огнезамедлительные системы, вводимые в полимер. Одним из эффективных методов снижения горючести полимерных материалов является нанесение на защищаемую поверхность вспучивающихся покрытий.

Под воздействием огневых и тепловых источников вспучивающее покрытие превращается в пенококс. Эффективность огнезащитных вспучивающихся покрытий определяют не только толщина, теплофизические свойства и прочность образовавшегося пенококса, но и адгезия к защищаемой поверхности вспучивающего покрытия и пенококса.

Ранее было показано, что использование углеродных никельсодержащих наноструктур приводит к увеличению углерод-углеродных группировок в пенококсах почти в 3 раза [6].

Увеличение содержания углеродных продуктов в пенококсе ведёт к значительному повышению огнетеплозащитных и теплофизических характеристик вспучивающихся покрытий.

Цель работы — исследование влияния углеродных нанотрубок и других составляющих на теплофизические, поверхностные и физико-механические

свойства вспучивающихся покрытий и композиционных полимерных покрытий.

Объекты и методы исследования

Исследованы полимерные композиции на основе эпоксидной смолы, отверждённой полиэтиленполиамином (ПЭПА) и содержащей в качестве газообразователя и стимулятора карбонизации полифосфат аммония (ПФА) и такие модифицирующие добавки, как углеродные многослойные нанотрубки (УМНТ), активированный уголь ($C_{\rm akt}$).

Подготовка вспучивающихся композиций заключалась в приготовлении смеси компонентов в описанных ниже соотношениях (табл. 1).

Таблица 1 Составы композиций на основе ЭД-20, масс.%

Компоненты	Композиция						
	1	2	3	4	5		
ЭД-20	68,49	68,97	68,49	86,96	86,21		
ПФА	20,55	20,69	20,55				
УМНТ			0,68		0,86		
$C_{a\kappa r}$	0,68						
ПЭПА	10,28	10,34	10,28	13,04	12,93		

В работе применяли УМНТ, синтез которых основан на пиролизе углеродсодержащих газов, полученных в [7]. Внутреннее пространство нанотрубок содержит частицы никеля в качестве катализатора. Характерные размеры используемых УМНТ (рис. 1) составляют: диаметр 50-60 нм, длина 3-7 мкм, удельная поверхность 90-120 м²/г [8].

Поверхностное натяжение исследуемого твердого модифицированного композита определяли

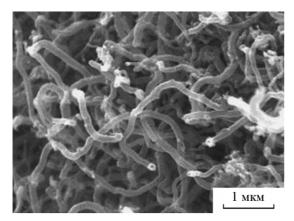


Рис. 1. Электронномикроскопический снимок углеродных нанотрубок.

путем измерения контактного угла жидкости, с известным поверхностным натяжением, лежащей на его поверхности. Равновесное положение капли на поверхности полимерного композита устанавливали с помощью уравнения Юнга:

$$\gamma_L \cos \theta = \gamma_s - \gamma_{sL}$$
,

где θ — краевой угол, γ_L — поверхностное натяжение жидкости, γ_s — поверхностное натяжение полимера, γ_{sL} — поверхностное натяжение между жидкостью и полимером, γ_L соѕ θ — представляет собой адгезионное натяжение. Для увеличения точности измерения был разработан программный комплекс для компьютерной обработки фотографии лежащей капли [9]. По координатам, используя метод наименьших квадратов, строили кривую, описывающую уравнение поверхности капли.

Исследование поверхности объектов проводили с помощью растрового электронного микроскопа РЭМ-100У, теплоемкость измеряли с помощью калориметра ИТ-С-400, прочность и кратность вспенивания определяли стандартными методами.

Результаты и их обсуждение

Поверхностное натяжение

В ходе исследований поверхностного натяжения твердого полимера между каплей жидкости и поверхностью наблюдалось ограниченное смачивание $0^{\circ} < \theta < 90^{\circ}$. В качестве известной жидкости в ходе работы мы брали дистиллированную воду. Контактные углы между композициями и жидкостью приведены в табл. 2.

Таблица 2 Контактные углы и адгезионное натяжение

Cnavarna	Композиция (табл. 1)						
Свойства	1	2	3	4	5		
Контактный угол, θ° Адгезионное натяжение, дин/см ²	43 0,73	34 0,83	54 0,59	59 0,52	64 0,44		

Из табл. 2 видно, что добавление ПФА в композицию приводит к увеличению (на 60%) адгезионного натяжения, работа адгезии увеличивается, капля растекается. УМНТ наоборот уменьшают работу адгезии, капля жидкости стягивается, что говорит об уменьшении адгезионного натяжения. В композиции ЭД-20+ УМНТ оно уменьшилось на 15%. В смешанной композиции произошло увеличение натяжения на 13%.

Теплоемкость

На рис. 2. приведены температурная зависимость теплоемкости композиций в интервале температур $50-400^{\circ}$ C.

Как видно из рис. 2, увеличение содержания углеродных продуктов в пенококсе приводит к существенному изменению характера зависимости

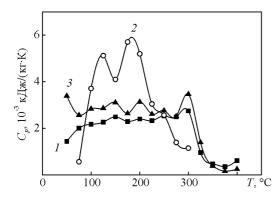


Рис. 2.Зависимость теплоемкости композизиций от температуры: композиция 1 (в масс.%): ЭД-20 — 68,49%, ПФА — 20,55%, $C_{\text{акт}} = 0,68\%$, ПЭПА — 10,28%; композиция 2: ЭД-20 — 68,97%, ПФА — 20,69%, ПЭПА — 10,34%; композиция 3: ЭД-20 — 68,49 %, ПФА — 20,55%, УМНТ — 0,68%, ПЭПА — 10,28%.

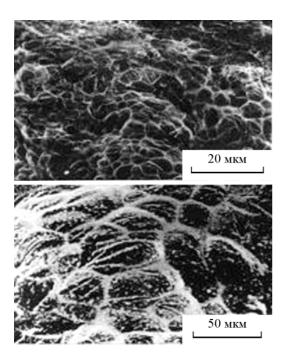


Рис. 3. Электронные фотографии пенококса композиции, в масс.%: ЭД-20 - 68,49, ПФА - 20,55%, УМНТ - 0,68%, ПЭПА - 10,28% при разном увеличении. Внешняя сторона.

теплоёмкости от температуры. Во-первых, теплоёмкость композиций, модифицированных УМНТ (композиция 3), в 3-7 раз выше теплоёмкости композиции, содержащей только ПФА (композиция 2), что объясняется разной степенью структурообразования композиций. Во-вторых, теплоёмкость композиции, содержащей только ПФА (композиция 2), резко возрастает, в 10-11 раз, при температурах в области 100-130°C и 160-210°C. В отличие от представленной картины в модифицированных композициях теплоёмкость изменяется без значительных скачков, что обусловлено более спокойным течением процесса газообразования.

Морфология поверхности

Поверхность пенококса, образованного при горении композиции 3, содержащей кроме ПФА углеродные никельсодержащие наноструктуры, представляет собой набор пузырьков, размеры которых примерно одинаковы и сравнительно невелики (рис. 3). Внутри пенококс имеет пористую структуру с очень тонкими стенками и высоким содержанием воздуха в межпоровом пространстве.

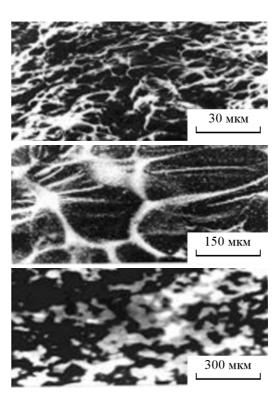


Рис. 4. Электронные фотографии пенококса композиции, в масс.%: ЭД-20 - 68,49 %, ПФА - 20,55%, борат кальция - 0,68%, ПЭПА - 10,28% при разном увеличении. Внешняя сторона.

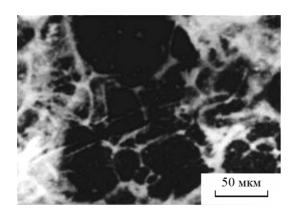


Рис. 5. Электронная фотография пенококса композиции, в масс. %: ЭД-20 - 68,97 %, ПФА - 20,69%, ПЭПА - 10,34%. Внешняя сторона.

Известно, что при высоких температурах борат кальция образует на поверхности пенококсов высоковязкую жидкость. Поэтому нами рассмотрено также и его влияние на морфологию поверхности пенкокса. Поверхность пенококса композиции, борат кальция (рис. 4), похожа на поверхность пенококса композиции 3 (рис. 5), хотя размеры пузырьков значительно выше. Внутреннее строение тоже имеет существенные отличия. Пористое строение внутренней части сохраняется, но стенки пор значительно толще.

Поверхность пенококса композиции 2 (рис. 3), содержащей ПФА, еще больше отличается увеличением размеров пузырьков относительно пенококсов композиций, показанных на рис. 3 и 4. Пористое строение внутренней части сохраняется, но стенки пор значительно толще, относительно внутренней части пенококса композиции 2.

Можно сказать, что физическое строение исследуемых пенококсов, образующихся при горении, как и в [10], обусловлено различными реологическими характеристиками композиций.

Выводы

На примере выбранных композиций прослеживается влияние углеродных никельсодержащих нанотрубок на процессы газообразования и карбонизации и как следствие на упорядочение структуры пенококса и размер пузырьков пенококса. При этом увеличивается доля воздуха в межпоровом пространстве, которая приводит к увеличению теплоемкости пенококса. Вместе с тем различие в структуре пенококса приводит к различной устойчивости к

горению. Эти результаты свидетельствуют о том, что на процесс горения полимера влияет структура получаемого в процессе горения пенококса. В результате проведенных исследований показана взаимосвязь поверхностного натяжения, теплоемкости полимерной композиции и структуры пенококса.

Таким образом, применение углеродных нанотрубок в полимерных материалах расширяет их область применения для строительной индустрии, машиностроения, транспорта, поскольку улучшают основные характеристики используемых материалов.

Литература

- Кононова С.В., Корыткова Э.Н., Ромашкова К.А. и др. Нанокомпозит на основе полимидоимида с гидросиликатными наночастицами различной морфологии. Журнал прикладной химии, 2007, т. 80, вып. 12, с. 2064 – 2070.
- 2. Biercuk M.J., Llaguno M.C., Radosavljevic M. et al. Carbon nanotube composites for thermal management. Appl. Phys. Lett., 2002, v. 80, p. 2767 2769.
- 3. Laurent Ch., Peigney A. Carbon nanotubes in composite materials. In: Encyclopedia of nanoscience and nanotechnology. Amer. Sci. Publ., 2004, v. 1, p. 635 654.
- Тренисова А.Л., Аношкин И.В., Горбунова И.Ю., Кербер М.Л. Изучение влияния углеродных нанотрубок на динамические свойства эпоксидного олигомера. Пластические массы, 2006, № 11, с. 10-13.
- Тренисова А.Л., Аношкин И.В., Горбунова И.Ю., и др. Изучение свойств нанокомпозитов на основе эпоксидного олигмера и различных наполнителей. Успехи химии и хим. технологии. 2007, т. XXI, № 6, с. 9 – 14.
- 6. Шуклин С.Г. Многослойные огнетеплозащитные покрытия, содержащие углеродные металлсодержащие наноструктуры. Химические волокна, 2006, т. 3, с. 15 20
- 7. Томишко М.М., Алексеев А.М., Томишко А.Г. и др. Углеродные нанотрубки основа материалов будущего. Нанотехника, 2004, № 1, с. 10 15.
- Томишко М.М., Демичева О.В., Алексеев А.М., и др. Многослойные углеродные нанотрубки и их применение. Российский химический журнал, 2008, т. LII, № 5, с. 39 43.
- 9. Бузилов С.В., Кирамов Р.И. Определение профиля лежащей капли. Материалы III науч.-техн. конф. "Приборостроение в XXI веке", 2007, с. 124 127.
- Гнедин Е.В., Козлова Н.В., Гитина Р.М., и др. Строение пенококсов, образующихся при пиролизе и горении полимеров, содержащих вспучивающиеся системы антипиренов. Высокомолекулярные соединения. 1991, т. 33, № 7, с. 1568 – 1575.

Шуклин Сергей Григорьевич — ГОУ ВПО "Ижевский государственный технический университет", доктор химических наук, доцент. Специалист в области физической химии наноматериалов, снижения горючести полимерных композитов. E-mail: shuklin_sg@mail.ru

Бузилов Сергей Викторович — ГОУ ВПО "Ижевский государственный технический университет", кандидат физико-математических наук, доцент. Специалист в области теплофизических измерений веществ. E-mail: buzilov@mail.ru

Шуклин Дмитрий Сергеевич — ГОУ ВПО "Ижевский государственный технический университет", магистр техники и технологии. Специалист в области теплофизических свойств полимерных композитов. E-mail: shedas@mail.ru